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10)  Digital Baseband Reception

•  Goal:  to recover s(t) from potentially noisy
               received signal

–  use a filter to decrease the effect of
     noise

•  Generic filter does not take advantage of known
    signal shape transmitted

             better result obtained when using that
      information

                        “matched filter”

s(t)
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•  Matched Filter

�  Definition:  a matched filter is a linear filter
      which minimizes the output signal to noise
      ratio (SNR)  � at time T, where ��is defined
as:
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�  Goal:  find H(f) which minimizes �

�  Proof:  Use Schwartz’s inequality which
                  states:

           equality holds only when  A(n) = KB*(x)
K real constant
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�  Example:

When n(t) is white noise �
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�  Matched Filter Implementation  (correlator)

� � � � � �� � � �
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•  Matched Filter Detector for Digital Baseband

...

Tb

s(t)

� �
0

.
bT

dt�
y(T)s(t)
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•  M-ary Baseband Reception

–  We can transmit more than two symbols

–  Example:  4-ary baseband communications

–  How to apply binary result to M-ary case ?
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11)  Brief Review of Probability and Noise
      Concepts

• Probability distribution function  F (x) =

• Probability density function  f (x)

•  Expected value  E (x) =

•  Variance 2
x� �

•  Basic pdfs

(1)  Uniform pdf

f (x)

x

f (x) =
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(2)  Gaussian pdf

f (x)

x

f (x) =
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x(n) is random with a constant PSD

•  White Noise

Gx(f)

f

N0/2

•  Narrowband Noise

–  most communication systems contain
     bandpass filters

–  white noise gets transformed into BP noise

–  when noise band is small compared to center
     frequency fc

BP noise called narrowband noise

expressed as:
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� � 2
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complex function

Quadratic
noise
components
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12)  Bit Error Rate

•  Evaluate errors made during transmission
    of hits

•  Errors occur when:

receive “1” when “0” is sent
receive “0” when “1” is sent

•  How to decide if you receive a “1” or “0”
    when transmission is noisy ??

detection theory

1

PM PFA

1

0 0
Send Receive
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r(t)=s(t)+Kw(t)

N(0,�w
2=1)
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•  f (w) =

•  f (r|s0) =

•  f (r|s1) =

For which range of “r” do you decide you sent a

“1”    (s1) “0”    (s0)

�0

r

• Assume you have additive white noise distortion at
the receiver

r(t)=si(t)+w(t),  si(t)=s0 , s1

How to pick �0 ?
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•  Goal:  To quantify likelihood of making an
            error in assigning bit values at the

        receiver.

•  Statistics of r(n)

–  mean of r(n)            ?

–  r(n) deterministic ?
random          ?

Assume transmission is noisy

� � � � � �r n s n w n� �

received
signal

transmission noise
(random Gaussian)

signal
sent

� �20, wN �0

1

s
s

�
�
�
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•  Notation

H1:  receive a “1”  (s1)

H0:  receive a “0”  (s0)

� �

� �
1 1

0 0

P H s

P H s

�

�

•  Correct decisions:

� �

� �

1 0

0 1

P H s

P H s

�

�

•  Incorrect decisions:

eP �

•  Overall probability of error:

•  Pe when there is equal probability of sending s0 & s1
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•  Definitions: Q, erf, & erfc functions

•   Assume s0=-V & s1=+V

0

1 0 0 1 0
12 ( | ) ( | ) ( | )
2eP P H s P H s f r s dr
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BER for single sample detector
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• How to select the threshold �0 ?

Maximum likelihood detector approach

Minimize the overall probability of error Pe

1 0 0 0 1 1( | ) ( ) ( | ) ( )eP P H s P s P H s P s� �

�0

r

2
0 1 0

0
1 1 0

In
2

ws s P
P s s

�
�

� ��
� � � �

�� 	

(More details in EC4570…)
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•  Application to Binary Matched Filter
    Detector

•  Need statistics on y = y1 – y0

•  pdf of y:  ?

s1(t)

s0(t)

r(t)

y1

y0

y

Tb

compare to
threshold�

� �
0

bT
dt���

�

�

�

� �
0

bT
dt��

Is y random or deterministic?

r(t)=si(t)+w(t)
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Bit error rate for matched filter detector

0 1
0

2 2
0 1

0 0

( ) ( )

1 ( ) ( )
2

b

b b

T

T T

s t s t dt

E

E s t dt s t dt

� �

� �
� �� �� �

� �

�

� �



10/3/03 EC2500MPF/FallFY04 69

•  How to compute the threshold��0 ?

Recall for simple detector, the threshold was selected as
the mid point between the two means for basic
problem.
How can we apply the result here ?

E[y|s0]=

E[y|s1]=
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•  Example

• Design a matched filter detector for the two signals.

• Find Pe when the additive white noise has a
power  P = 10–3 w/Hz.

T = 8 10–3 s

T

–1
t

s0(t)

+1

T
t

s1(t)

+1
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•  Example

• Design a matched filter detector for the two signals.

• Find Pe when the additive white noise has a power
Pe = 0.1 w/Hz.

t
1

–1

s0(t)

+1 0.5 1
t

s1(t)

+1

–1

sin(2�t)
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•  M-ary Baseband Performance

Assume we send M = 4 different levels
(Bi= 0, A, 2A, 3A, i=0,…3)

r(t) ?� �
0

bT
dt��

Assume additive Gaussian noise
                    r(t)=s(t)+n(t)
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• P(error in receiving B2)=
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2 2

2
0 0

P(error in receiving B ) 2
2 4

s sA T A T
Q erfc

N N

� � � �
� � � �� � �
� � � �
� � � �

• P(error in receiving B1)=

• P(error in receiving B0)=

• P(error in receiving B3)=

• Assume each error may occur as likely as the
others

Pe=
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• Assume we send M  different levels, compute
the overall probability of error becomes:
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�  Dynamic range for audio signals
      Ref [3]

13)  Application:  Compact Disk
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�  Signal reproduction in CD Player

Digital
oversampling

filter
X4

Noise
shaper
H(f)Digital

input
16 bits

44.1 KHz

x(n)
y(n)

28 bits
176.1 KHz

14 bits

14 bits
D/A LPF

–20 KHz
f

xa(n)

20 KHz

88.2 KHz
f

x(n)

44.1 KHz0
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•  Why use oversampling ?

•  First, assume we don’t use oversampling.

x(r)
z(t) y(t)LPF

Hr(j�)
14 bits
D/A

001

an
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og
 o

ut
pu

t

010 011 100 101 110 111000

7
6
5
4
3
2
1

0

Input/output
relationship for
a unipolar D/A
(3 bits)
converter.

Ideal D/A Converter

t

x1(t)

t

z(t)

Practical D/A Converter

(p. 331)

x(n)
x1(t) z(t)Hz(f)

hz(t)

t
T

1
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�  D/A Converter Output Expression

� � � � � �

� � � � � �
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� �
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�

|Hz(j�)|

� � � � � �1 zZ j X j H� � ��
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•  Need for LPF filter ?

–  to smooth out output steps

–  to undo distortion added by D/A converter

�s 2�s

�

|Z(j�)|

�

|Hr(j�)|

�

Hr(j�)
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•  Oversampling in the Time Domain

Digital
oversampling

filter
X4

Noise
shaper
Hs(f)16 bits

44.1 KHz

x(n)
y(n)

176.1 KHz

14 bits
D/A LPF

a(n)

input to upsampler by 4

output to upsampler by 4

output of FIR filter

n�
4321

010

n
210

n�

001   010   �   001   000   000   000   010

x(n)
y2(n)

y(n)� 4 FIR filter
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f

Xa(f)

(KHz)

X(f)

f
(KHz)132.3 176.488.244.10

Y1(f)

f
(KHz)176.40

f

Y(f)

(KHz)

f

A(f)

(KHz)

without oversampling

with oversampling

Y1(f) after FIR filter

after analog LPF

�  Advantages of Oversampling
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• Example:

Assume
1) you have an analog signal which spans [0 20KHz],
2) the D/A converter has a sampling frequency fs=176.4KHz.
Determine the characteristics (order and cutoff frequency) for
the anti-imaging Butterworth type filter which satisfy the
following specifications:

1)  Image frequencies must be attenuated by at least 40dB
2) Signal components may be altered by a maximum of
0.5dB

� �
1/ 22

1( )
1 / n

c

H f
f f

�
� ��
� �



10/3/03 EC2500MPF/FallFY04 87



10/3/03 EC2500MPF/FallFY04 88

–  Goal:  to decrease noise in the audio band

�  Noise Shaping Filter
no

is
e 

le
ve

l

noise shaping
characteristic

noise level
without shaping

KHz

f
20 88
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�Dither

Figure 2.121 - Coding of Dithered SignalFigure 2.121 - Coding of Dithered Signal

Figure 2.122 - Fourier Transform of Dithered SignalFigure 2.122 - Fourier Transform of Dithered Signal
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Poh1man Fig. 6-27 An example of noise shaping showing a 1
kHz sinewave with -90 dB amplitude; measurements are made
with a 16 kHz lowpass filter.
A. Original 20 bit recording.
B. Truncated 16 bit signal.
C. Dithered 16 bit signal.
D. Noise shaping preserves information in lower 4 bits.

Ref [4,5]

�Dither & noise shaping effects
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